A Moonlighting Enolase from Lactobacillus gasseri does not Require Enzymatic Activity to Inhibit Neisseria gonorrhoeae Adherence to Epithelial Cells.

2015 
Enolases are generally thought of as cytoplasmic enzymes involved in glycolysis and gluconeogenesis. However, several bacteria have active forms of enolase associated with the cell surface and these proteins are utilized for functions other than central metabolism. Recently, a surface-associated protein produced by Lactobacillus gasseri ATCC 33323 with homology to enolase was found to inhibit the adherence of the sexually transmitted pathogen, Neisseria gonorrhoeae, to epithelial cells in culture. Here, we show that the protein is an active enolase in vitro. A recombinantly expressed, C-terminal His-tagged version of the protein, His6-Eno3, inhibited gonococcal adherence. Assays utilizing inhibitors of enolase enzymatic activity showed that this inhibitory activity required the substrate-binding site to be in an open conformation; however, the enolase enzymatic activity of the protein was not necessary for inhibition of gonococcal adherence. An L. gasseri strain carrying an insertional mutation in eno3 was viable, indicating that eno3 is not an essential gene in L. gasseri 33323. This observation, along with the results of the enzyme assays, is consistent with reports that this strain encodes more than one enolase. Here we show that the three L. gasseri genes annotated as encoding an enolase are expressed. The L. gasseri eno3 mutant exhibited reduced, but not abolished, inhibition of gonococcal adherence, which supports the hypothesis that L. gasseri inhibition of gonococcal adherence is a multifactorial process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    6
    Citations
    NaN
    KQI
    []