A Path-Counter Method for Fault-Tolerant Minimal Routing Algorithms in 2D Mesh

2018 
Fault-tolerant Manhattan routing algorithms aim at finding a Manhattan path between the source and destination nodes and route around all faulty nodes. However, besides faulty nodes, some nonfaulty nodes that are helpless to make up a fault-tolerant Manhattan path should also be routed around. How to label such nonfaulty nodes efficiently is a major challenge. We propose a path-counter method. It can label such nodes with low time-complexity by counting every node’s fault-tolerant Manhattan paths to the source or destination node. During the path-counting procedure, no available nodes will be sacrificed under arbitrary fault distribution. Compared with fault-block model based work, our proposed method is independent of fault distribution, so its computational complexity is very low.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []