SAR Image Autofocus By Sharpness Optimization: A Theoretical Study

2007 
Synthetic aperture radar (SAR) autofocus techniques that optimize sharpness metrics can produce excellent restorations in comparison with conventional autofocus approaches. To help formalize the understanding of metric-based SAR autofocus methods, and to gain more insight into their performance, we present a theoretical analysis of these techniques using simple image models. Specifically, we consider the intensity-squared metric, and a dominant point-targets image model, and derive expressions for the resulting objective function. We examine the conditions under which the perfectly focused image models correspond to stationary points of the objective function. A key contribution is that we demonstrate formally, for the specific case of intensity-squared minimization autofocus, the mechanism by which metric-based methods utilize the multichannel defocusing model of SAR autofocus to enforce the stationary point property for multiple image columns. Furthermore, our analysis shows that the objective function has a special separble property through which it can be well approximated locally by a sum of 1-D functions of each phase error component. This allows fast performance through solving a sequence of 1-D optimization problems for each phase component simultaneously. Simulation results using the proposed models and actual SAR imagery confirm that the analysis extends well to realistic situations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    109
    Citations
    NaN
    KQI
    []