Functional Analyses of MMP Genes in the Ligament of Pinctada fucata

2018 
The bivalve hinge ligament is the hard tissue that functions to open and close shells. The ligament contains fibrous structures consisting of aragonite crystals surrounded by a dense organic matrix. This organic matrix may contribute to the formation of fibrous aragonite crystals, but the mechanism underlying this formation remains unclear. Recently, we showed that tissue inhibitor of metalloproteinase (TIMP) and matrix metalloproteinase (MMP) is related to the formation of the ligament in Pinctada fucata. BLAST search of genome database revealed that seven MMP genes are encoded in the genome of P. fucata. To identify the specific MMP that may contribute to ligament formation, the expression level of each MMP was measured in the mantle isthmus, which secretes the ligament. The expression of MMP54089 increased after scratching of the ligament, while the expressions of other MMPs did not increase after doing the same operation. To identify the role of MMP54089 in forming the ligament structure, double-stranded (ds) RNA targeting MMP54089 was injected into the living P. fucata to suppress the function of MMP54089. Scanning electron microscopic images showed disordered growing surfaces of the ligament in individuals injected with MMP54089-specific dsRNA. These results suggest that PfTIMP and MMP54089 play important roles in the formation of the fibrous ligament structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []