Correlation between operative time and crowd-sourced skills assessment for robotic bariatric surgery.

2020 
Introduction Operative time has been traditionally used as a proxy for surgical skill and is commonly utilized to measure the learning curve, assuming that faster operations indicate a more skilled surgeon. The Global Evaluative Assessment of Robotic Skills (GEARS) rubric is a validated Likert scale for evaluating technical skill. We hypothesize that operative time will not correlate with the GEARS score. Methods Patients undergoing elective robotic sleeve gastrectomy at a single bariatric center of excellence hospital from January 2019 to March 2020 were captured in a prospectively maintained database. For step-specific scoring, videos were broken down into three steps: ligation of short gastric vessels, gastric transection, and oversewing the staple line. Overall and step-specific GEARS scores were assigned by crowd-sourced evaluators. Correlation between operative time and GEARS score was assessed with linear regression and calculation of the R2 statistic. Results Sixty-eight patients were included in the study, with a mean operative time of 112 ± 27.4 min. The mean GEARS score was 20.1 ± 0.81. Mean scores for the GEARS subcomponents were: bimanual dexterity 4.06 ± 0.17; depth perception 3.96 ± 0.24; efficiency 3.82 ± 0.19; force sensitivity 4.06 ± 0.20; robotic control 4.16 ± 0.21. Operative time and overall score showed no correlation (R2 = 0.0146, p = 0.326). Step-specific times and scores showed weak correlation for gastric transection (R2 = 0.0737, p = 0.028) and no correlation for ligation of short gastric vessels (R2 = 0.0262, p = 0.209) or oversewing the staple line (R2 = 0.0142, p = 0.344). Conclusions Operative time and crowd-sourced GEARS score were not correlated. Operative time and GEARS scores measure different performance characteristics, and future studies should consider using both a validated skills assessment tool and operative time for a more complete evaluation of skill.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    2
    Citations
    NaN
    KQI
    []