Simulating urban dynamics in China using a gradient cellular automata model based on S-shaped curve evolution characteristics

2018 
ABSTRACTCellular automata (CA) have been efficiently used to express the complexity and dynamics of cities at different scales. However, those large-scale simulation models typically use only binary values to represent urbanization states without considering mixed types within a cell. They also ignore differences among the cells in terms of their temporal evolution characteristics at different urbanization stages. This study establishes a gradient CA for solving such problems while considering development differences among the cells. The impervious surface area data was used to detect the urbanization states and temporal evolution trends of the grid cells. Transition rules were determined with the incorporation of urban development theory expressed as an S-shaped curve. China was selected as the case study area to validate the performance of the gradient CA for a national simulation. A comparison was also made to a traditional binary logistic-CA. The results demonstrated that the gradient CA achieved high...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    31
    Citations
    NaN
    KQI
    []