Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process
2019
Abstract In this study, simultaneous nitrification and denitrification (SND) process was successfully established in a hybrid sequencing batch biofilm reactor (HSBBR). High removal efficiency of NH4+-N (98.0±2.4% to 99.8±0.4%) and COD (86.6±4.0% to 91.6±1.8%) was observed in the salinity range of 0.0 to 2.4%. SND via nitrite, replacing SND via nitrate, became the main nitrogen removal pathway at 1.6% and 2.4% salinity. Suspended sludge and biofilm shared similar microbial composition. Dominant genera were substituted by salt-adaptable microbes as salinity increasing. Abundance of autotrophic ammonia-oxidizing bacteria (Nitrosomonas) increased with elevated salinity, while autotrophic nitrite-oxidizing bacteria (Nitrospira) exhibited extreme sensitivity to salinity. The presence of Gemmata demonstrated that heterotrophic nitrification co-existed with autotrophic nitrification in the SND process. Aerobic denitrifiers (Denitratisoma and Thauera) were also identified. Thiothrix, Sedimenticola, Sulfuritalea, Arcobacter (sulfide-based autotrophic denitrifier) and Hydrogenophaga (hydrogen-based autotrophic denitrifier) were detected in both S-sludge and biofilm. The occurrence of ANAMMOX bacteria Pirellula and Planctomyces indicated that ANAMMOX process was another pathway for nitrogen removal. Nitrogen removal in the HSBBR was accomplished via diverse pathways, including traditional autotrophic nitrification/heterotrophic denitrification, heterotrophic nitrification, aerobic and autotrophic denitrification, and ANAMMOX.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
56
References
58
Citations
NaN
KQI