Value-driven Synthesis for Neural Network ASICs

2018 
In order to enable low power and high performance evaluation of neural network (NN) applications, we investigate new design methodologies for synthesizing neural network ASICs (NN-ASICs). An NN-ASIC takes a trained NN and implements a chip with customized optimization. Knowing the NN topology and weights allows us to develop unique optimization schemes which are not available to regular ASICs. In this work, we investigate two types of value-driven optimized multipliers which exploit the knowledge of synaptic weights and we develop an algorithm to synthesize the multiplication of trained NNs using these special multipliers instead of general ones. The proposed method is evaluated using several Deep Neural Networks. Experimental results demonstrate that compared to traditional NNPs, our proposed NN-ASICs can achieve up to 6.5x and 55x improvement in performance and energy efficiency (i.e. inverse of Energy-Delay-Product), respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []