Limits on the Adaptive Security of Yao’s Garbling

2021 
Yao’s garbling scheme is one of the most fundamental cryptographic constructions. Lindell and Pinkas (Journal of Cryptograhy 2009) gave a formal proof of security in the selective setting where the adversary chooses the challenge inputs before seeing the garbled circuit assuming secure symmetric-key encryption (and hence one-way functions). This was followed by results, both positive and negative, concerning its security in the, stronger, adaptive setting. Applebaum et al. (Crypto 2013) showed that it cannot satisfy adaptive security as is, due to a simple incompressibility argument. Jafargholi and Wichs (TCC 2017) considered a natural adaptation of Yao’s scheme (where the output mapping is sent in the online phase, together with the garbled input) that circumvents this negative result, and proved that it is adaptively secure, at least for shallow circuits. In particular, they showed that for the class of circuits of depth \(\delta \), the loss in security is at most exponential in \(\delta \). The above results all concern the simulation-based notion of security.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    2
    Citations
    NaN
    KQI
    []