Activation of mitogen-activated protein kinase in estrogen receptor α-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor α-negative human breast tumors

2006 
Breast cancer presents as either estrogen receptor α (ERα) positive or negative, with ERα+ tumors responding to antiestrogen therapy and having a better prognosis. By themselves, mRNA expression signatures of estrogen regulation in ERα+ breast cancer cells do not account for the vast molecular differences observed between ERα+ and ERα− cancers. In ERα− tumors, overexpression of epidermal growth factor receptor (EGFR) or c-erbB-2, leading to increased growth factor signaling, is observed such that mitogen-activated protein (MAP) kinase (MAPK) is significantly hyperactivated compared with ERα+ breast cancer. In ERα+/progesterone receptor–positive, estrogen-dependent MCF-7 breast cancer cells, we stably overexpressed EGFR or constitutively active erbB-2, Raf, or MAP/extracellular signal-regulated kinase kinase, resulting in cell lines exhibiting hyperactivation of MAPK, estrogen-independent growth, and the reversible down-regulation of ERα expression. By global mRNA profiling, we found a “MAPK signature” of ∼400 genes consistently up-regulated or down-regulated in each of the MAPK+ cell lines. In several independent profile data sets of human breast tumors, the in vitro MAPK signature was able to accurately distinguish ER+ from ER− tumors. In addition, our in vitro mRNA profile data revealed distinct mRNA signatures specific to either erbB-2 or EGFR activation. A subset of breast tumor profiles was found to share extensive similarities with either the erbB-2-specific or the EGFR-specific signatures. Our results confirm that increased MAPK activation causes loss of ERα expression and suggest that hyperactivation of MAPK plays a role in the generation of the ERα− phenotype in breast cancer. These MAPK+ cell lines are excellent models for investigating the underlying mechanisms behind the ERα− phenotype. (Cancer Res 2006; 66(7): 3903-11)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    207
    Citations
    NaN
    KQI
    []