GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly

2017 
The identification of genomic rearrangements, particularly in cancers, with high sensitivity and specificity using massively parallel sequencing remains a major challenge. Here, we describe the Genome Rearrangement IDentification Software Suite (GRIDSS), a high-speed structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph assembler. By combining assembly, split read and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line and patient tumour data, recently winning SV sub-challenge #5 of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods. GRIDSS identifies non-template sequence insertions, micro-homologies and large imperfect homologies, and supports multi-sample analysis. GRIDSS is freely available at https://github.com/PapenfussLab/gridss.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    19
    Citations
    NaN
    KQI
    []