Ecotoxicological impacts of oil sand mining activity to endemic caged mussels Pyganodon grandis.

2022 
The intense mining extraction of oil sand (OS) has increased over the last few decades, raising concerns about the release of OS contaminants and toxicity in resident aquatic organisms in the Athabasca River (Alberta, Canada). To address this, endemic Pyganodon grandis mussels were caged for 6 weeks at various upstream and downstream sites of industrial OS mining activities. Post-exposure mussels were then analyzed for light/medium/heavy polyaromatic hydrocarbons (PAHs) in tissues, general health (weight to length ratio, growth rate, air survival time), biotransformation (cytochrome P4501A and 3A and glutathione S-transferase activities), oxidative stress/inflammation (lipid peroxidation-LPO and arachidonate cyclooxygenase-COX), genotoxicity (DNA strand breaks), and gonad status (triglycerides, GSI and vitellogenin-like proteins). The following effects significantly differed between OS mining area and natural/background sites: health condition, growth rate, air survival time, COX (immune/inflammation) activity, P4501A/GST activity, LPO and DNA breaks in the digestive gland and vitellogenin-like proteins in the gonad. Correlation analysis revealed that the biochemical responses were scaled to at least one of the following impacts at the individual level: air survival time, weight to length ratio, growth rate and vitellogenin-like proteins. These indices were therefore identified as key adverse outcome pathways of mussels impacted by OS mining activities. Based on the relative levels of light/medium/heavy PAHs in tissues, the observed effects appears to be associated rather to the disturbance of OS in this area than contamination from OS tailing ponds leaching into the aquatic environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []