Effects of permafrost thaw-subsidence on soil bacterial communities in the southern Qinghai-Tibetan Plateau

2018 
Abstract Permafrost thaws cause ground subsidence as the ground ice melts and drains away. Little is known about the effects of this permafrost thaw subsidence on bacterial communities. In this study, using Illumina sequencing methods, we investigated the structure of bacterial communities in the upper 50 cm of the soil in a typical permafrost thaw subsidence area on the southern Qinghai-Tibetan plateau. The micro topographies in the study area were classified as control, collapsing, and subsided types. Results showed that the organic carbon content in the collapsing areas was slightly lower than that in the control areas, while there was a substantial decrease in the subsided areas, with a loss of 23.6 ± 13.2% of organic carbon. The microbial carbon contents showed the highest values in collapsing areas. For all three types of soils, the most abundant microbial groups were Proteobacteria, Acidobacteria, and Bacteroidetes. The Non-metric multidimensional scaling (NMDS) results showed that the bacterial communities were different in the subsided areas than in the control and collapsing areas. In the control and collapsing areas, the soil bacterial communities showed a clear vertical distribution pattern with depth, which was not apparent in the subsided areas. The bacterial communities also correlated with soil variables such as carbon, moisture, nitrogen contents, and the C:N ratio. The ground subsidence can greatly change these variables. The results suggested that permafrost thaw subsidence had important effects on microbial communities via the changes of soil properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    17
    Citations
    NaN
    KQI
    []