Exploring the robustness of urban bus network: A case from Southern China

2020 
Abstract The robustness of urban bus network is essential to a city that heavily relies on buses as its main transportation solution. In this paper, the urban bus network has been modeled as a directed and space L network, and Changsha, a transportation hub of nearly 8 million people and hundreds of bus lines in southern China, is taken as a case. Based on the quantitative analyses of the topological properties, it is found that Changsha urban bus network is a scale-free network, not a small-world network. To evaluate the robustness of the network, five scenarios of network failure are simulated, including a random failure and four types of intentional attacks that differed in key node identification methods (i.e., unweighted degree or betweenness centrality) and attack strategies (i.e., normal or cascading attack). It is revealed that intentional attacks are more destructive than a random failure, and cascading attacks are more disruptive than normal attacks in the urban bus network. In addition, the key nodes identification methods are found to play a critical role in the robustness of the urban bus network. Specifically, cascading attack could be more disruptive when the betweenness centrality is used to identify key nodes; in contrast, normal attack could be more disruptive when the unweighted degree is used to identify key nodes. Our results could provide reference for risk management of urban bus network.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []