Toward quantifying trust dynamics: How people adjust their trust after moment-to-moment interaction with automation
2021
Objective: We examine how human operators adjust their trust in automation as a result of their moment-to-moment interaction with automation. Background: Most existing studies measured trust by administering questionnaires at the end of an experiment. Only a limited number of studies viewed trust as a dynamic variable that can strengthen or decay over time. Method: Seventy-five participants took part in an aided memory recognition task. In the task, participants viewed a series of images and later on performed 40 trials of the recognition task to identify a target image when it was presented with a distractor. In each trial, participants performed the initial recognition by themselves, received a recommendation from an automated decision aid, and performed the final recognition. After each trial, participants reported their trust on a visual analog scale. Results: Outcome bias and contrast effect significantly influence human operators' trust adjustments. An automation failure leads to a larger trust decrement if the final outcome is undesirable, and a marginally larger trust decrement if the human operator succeeds the task by him-/her-self. An automation success engenders a greater trust increment if the human operator fails the task. Additionally, automation failures have a larger effect on trust adjustment than automation successes. Conclusion: Human operators adjust their trust in automation as a result of their moment-to-moment interaction with automation. Their trust adjustments are significantly influenced by decision-making heuristics/biases. Application: Understanding the trust adjustment process enables accurate prediction of the operators' moment-to-moment trust in automation and informs the design of trust-aware adaptive automation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
0
Citations
NaN
KQI