Phase Diagrams of Fatty Acids as Biosourced Phase Change Materials for Thermal Energy Storage

2019 
Thermal energy storage is known as a key element to optimize the use of renewable energies and to improve building performances. Phase change materials (PCMs) derived from wastes or by-products of plant or animal oil origins are low-cost biosourced PCMs and are composed of more than 75% of fatty acids. They present paraffin-like storage properties and melting temperatures ranging from −23 °C to 78 °C. Therefore, they could be appropriate for latent heat storage technologies for building applications. Although already studied, a more detailed exploration of this class of PCMs is still required. In this frame, a screening of fatty acids and of their related binary systems must be performed. The infrared thermography method (IRT), already used for the fast estimation of simple phase diagrams (~2 h), appears to be best suited to achieve this goal. IRT method applicability to the more complex fatty acids phase diagrams is hence studied in this work. A phase diagram comprising more than a hundred data sets was obtained for the palmitic acid–stearic acid binary system. The reliability of the results is assessed by comparison to differential scanning calorimetry (DSC) measurements or results from other standard methods presented in literature and to a solid–liquid equilibrium thermodynamic model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    8
    Citations
    NaN
    KQI
    []