A reinforcement agent for threshold fusion

2008 
Finding an optimal threshold in order to segment digital images is a difficult task in image processing. Numerous approaches to image thresholding already exist in the literature. In this work, a reinforced threshold fusion for image binarization is introduced which aggregates existing thresholding techniques. The reinforcement agent learns the optimal weights for different thresholds and segments the image globally. A fuzzy reward function is employed to measure object similarities between the binarized image and the original gray-level image, and provide feedback to the agent. The experiments show that promising improvement can be obtained. Three well-established thresholding techniques are combined by the reinforcement agent and the results are compared using error measurements based on ground-truth images.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    12
    Citations
    NaN
    KQI
    []