PARP-1 Attenuates Smad-Mediated Transcription

2010 
The versatile cytokine transforming growth factor β (TGF-β) regulates cellular growth, differentiation, and migration during embryonic development and adult tissue homeostasis. Activation of TGF-β receptors leads to phosphorylation of Smad2 and Smad3, which oligomerize with Smad4 and accumulate in the nucleus where they recognize gene regulatory regions and orchestrate transcription. Termination of Smad-activated transcription involves Smad dephosphorylation, nuclear export, or ubiquitin-mediated degradation. In an unbiased proteomic screen, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a Smad-interacting partner. PARP-1 dissociates Smad complexes from DNA by ADP-ribosylating Smad3 and Smad4, which attenuates Smad-specific gene responses and TGF-β-induced epithelial-mesenchymal transition. Thus, our results identify ADP-ribosylation of Smad proteins by PARP-1 as a key step in controlling the strength and duration of Smad-mediated transcription.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    104
    Citations
    NaN
    KQI
    []