A Strategy for Tumor Targeting by Higher-Order Glycan Pattern Recognition: Synthesis and In Vitro and In Vivo Properties of Glycoalbumins Conjugated with Four Different N-Glycan Molecules.

2020 
Natural glycoconjugates that form glycocalyx play important roles in various biological processes based on cell surface recognition through pattern recognition mechanisms. This work represents a new synthesis-based screening strategy to efficiently target the cancer cells by higher-order glycan pattern recognition in both cells and intact animals (mice). The use of the very fast, selective, and effective RIKEN click reaction (6π-azaelectrocyclization of unsaturated imines) allows to synthesize and screen various structurally well-defined glycoalbumins containing two and eventually four different N-glycan structures in a very short time. The importance of glycan pattern recognition is exemplified in both cell- and mouse-based experiments. The use of pattern recognition mechanisms for cell targeting represents a novel and promising strategy for the development of diagnostic, prophylactic, and therapeutic agents for various diseases including cancers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    5
    Citations
    NaN
    KQI
    []