Hyperpolarization of cis-15N,15N'-azobenzene by parahydrogen at ultralow magnetic fields.

2021 
Development of the methods to exploit nuclear hyperpolarization and search for molecules whose nuclear spins can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. Of particular interest are those molecules that have long nuclear relaxation times, making them to be suitable candidates as contrast agents in magnetic resonance imaging. In this work, we present a detailed study of SABRE SHEATH (Signal Amplification By Reversible Exchange in Shield Enabled Alignment Transfer to Heteronuclei) experiments of 15N,15N' azobenzene. In SABRE SHEATH experiments nuclear spins of the target are hyperpolarized by transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. The studied system is complicated, and we are concerned only about a subset of the data, presenting details for the molecules that experience fast chemical exchange at the catalytic complex and thus are involved in polarizing the free azobenzene. Azobenzene exists in two isomers trans- and cis-. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suitable magnetic fields. Enhancement factors (relative to 9.4 T) reach several thousands of times for 15N spins and a few tens of times for the 1H spins. There are two approaches to observe either hyperpolarized magnetization of 15N/1H spins or hyperpolarized singlet order of the 15N spin pair. We compare these approaches and present the field dependencies of SABRE experiments for them. No hyperpolarization of trans 15N,15N' azobenzene was observed. The results presented here will be useful for further experiments where hyperpolarized cis-15N,15N' azobenzene is switched by light to trans 15N,15N' azobenzene for storing the produced hyperpolarization in the long-lived spin state of the 15N pair of trans-15N,15N' azobenzene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []