Two modes of inhibitory neuronal shutdown distinctly amplify seizures in humans

2020 
Inhibitory neurons are critical for normal brain function but dysregulated in disorders such as epilepsy. At least two theories exist for how inhibition may acutely decrease during a seizure: hyperpolarization of fast-spiking (FS) inhibitory neurons by other inhibitory neurons, or depolarization block (DB) of FS neurons resulting in an inability to fire action potentials. Firing rate alone is unable to disambiguate these alternatives. Here, we show that human FS neurons can stop firing due to both hyperpolarization and DB within the same seizure. However, only DB of FS cells is associated with dramatic increases in local seizure amplitude, unobstructed traveling waves, and transient increases in excitatory neuronal firing. This result is independent of seizure etiology or focus. Computational models of DB reproduce the in vivo human biophysics. These methods enable intracellular decoding using only extracellular recordings in humans and explain the otherwise ambiguous inhibitory neuronal control of human seizures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    2
    Citations
    NaN
    KQI
    []