The impacts of uncertainties in emissions on aerosol data assimilation and short-term PM 2.5 predictions in CMAQ v5.2.1 over East Asia

2020 
Abstract. For the purpose of improving PM prediction skills in East Asia, we estimated a new background error covariance matrix (BEC) for aerosol data assimilation using surface PM2.5 observations that accounts for the uncertainties in anthropogenic emissions. In contrast to the conventional method to estimate the BEC that uses perturbations in meteorological data, this method additionally considered the perturbations using two different emission inventories. The impacts of the new BEC were then tested for the prediction of surface PM2.5 over East Asia using Community Multi-scale Air Quality (CMAQ) initialized by three-dimensional variational method (3D-VAR). The surface PM2.5 data measured at 154 sites in South Korea and 1,535 sites in China were assimilated every six hours during the Korea-United States Air Quality Study (KORUS-AQ) campaign period (1 May–14 June 2016). Data assimilation with our new BEC showed better agreement with the surface PM2.5 observations than that with the conventional method. Our method also showed closer agreement with the observations in 24-hour PM2.5 predictions with ~ 44 % fewer negative biases than the conventional method. We conclude that increased standard deviations, together with horizontal and vertical length scales in the new BEC, tend to improve the data assimilation and short-term predictions for the surface PM2.5. This paper also suggests further research efforts devoted to estimating the BEC to improve PM2.5 predictions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []