Investigation of the solvent-dependent photolysis of a nonnucleoside reverse-transcriptase inhibitor, antiviral agent efavirenz.

2017 
This study sought to investigate the solvent-dependency on the photolysis of efavirenz to gain insight into the photoprocesses involved. The primary mechanisms were firstly the excited-state intramolecular proton transfer (i.e. phototautomerization), which generated the imidic acid phototautomer observed as [M-H]− quasimolecular ion at m/z 314.0070 in the high-performance liquid chromatography–electrospray ionizationtime-of-flight mass spectrometry in the negative mode. Secondly, the photoinduced α-cleavage with the loss of a carbonyl group occurred (i.e. photodecarbonylation) to form the photoproduct at m/z 286.0395. The ultraviolet–visible spectra illustrated a large, hyperchromic, and slight bathochromic effect in both the π→π* and n→π* electronic transitions. The largest bathochromic effect was prevalent in the chloroform solvent, i.e. chloroform (π* = 0.58; β = 0.00; α = 0.44) > methanol (π* = 0.60; β = 0.66; α = 0.98) > acetonitrile (π* = 0.75; β = 0.40; α = 0.19). This is due to the significant in...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    2
    Citations
    NaN
    KQI
    []