ДОПОЛНИТЕЛЬНЫЕ СВОЙСТВА ИНТЕГРАЛА В СМЫСЛЕ ГЛАВНОГО ЗНАЧЕНИЯ И ВАРИАНТ СВЕДЕНИЯ ИНТЕГРАЛА ЛЕБЕГА-СТИЛТЬЕСА К ИНТЕГРАЛУ РИМАНА-СТИЛТЬЕСА

2016 
Найдена в явном виде альтернативная формула представления функционала обобщенной функции P (1/ x ) (и всех его производных) в пространстве обобщенных функций медленного роста. Наиболее широким классом производящих функций для меры множеств в интеграле Лебега-Стилтьеса, а также производящих функций в интеграле Римана-Стилтьеса, является множество функций с ограниченной вариацией. Функции с ограниченной вариацией представляются, как известно, в виде разности двух монотонных неубывающих функций. Каждая из этих двух монотонных неубывающих функций является в общем случае разрывной функцией (разрывной как слева, так и справа). Для целей изложения свойств меры Лебега-Стилтьеса и соответствующих свойств интеграла Лебега-Стилтьеса удобно считать, что монотонная производящая функция является непрерывной слева (или непрерывной только справа). При использовании интеграла Лебега-Стилтьеса в ряде случаев предлагается переопределить, в случае необходимости, каждую из двух монотонных неубывающих функций так, чтобы они стали непрерывными слева, что снижает общность изложения и применения. Разрывная производящая функция с ограниченным изменением представлена на отрезке в виде суммы непрерывной функции с ограниченным изменением, непрерывной слева функции скачков и непрерывной справа функции скачков. Обусловленная этими тремя функциями мера Лебега-Стилтьеса множества, а также соответствующий интеграл Лебега-Стилтьеса для разрывной (как справа, так и слева) производящей функции представлены в виде суммы трех слагаемых, каждое из которых определяется одной из указанных выше функций. Исходный интеграл Лебега-Стилтьеса оказывается независящим от значений производящей функции в точках разрыва. В методическом плане проиллюстрировано, что из полученных разложений непосредственно следует, что если подынтегральная функция непрерывна на отрезке [ a, b ], то интеграл Лебега-Стилтьеса по отрезку [ a, b ] совпадает с соответствующим интегралом Римана-Стилтьеса по отрезку [ a, b ]. Ранее этот факт был доказан на полуинтервале [ a, b ) для непрерывной слева производящей функции.The functional P (1/ x ) and its derivatives are represented in the alternative form. The most wide class of generating functions for the Lebesgue Stieltjes measure of the set and for the Lebesgue Stieltjes Integral is the class of bounded variation functions. It is known, that the function of bounded variation can be written in the form of difference of two discontinuous monotone nondecreasing functions. It is convenient to explain the properties of Lebesgue Stieltjes Integral and the properties of Lebesgue Stieltjes measure in the case, when the monotone nondecreasing generating function is continuous from the left. It is offered sometimes to overdetermine the discontinuous generating function (discontinuous from the left and discontinuous from the right). Then the resulting generating function is turned out to be continuous from the left. Discontinuous generating function of bounded variation over the segment [a, b] is decomposed in the sum of continuous function of bounded variation, jump function (continuous from the left) and jump function (continuous from the right). Lebesgue Stieltjes measure of the set with respect to these three functions and appropriate Lebesgue Stieltjes Integral decomposition are represented by relevant three terms in the sum. Lebesgue Stieltjes Integral does not depend on the values of generating function at the jump dots. It follows from these decompositions that if the function under integral is continuous over the segment [a, b], then the appropriate Lebesgue Stieltjes Integral over the segment [a, b] is the same as the appropriate RiemannStieltjes Integral over the segment [a, b], not only over the half-interval [a, b).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []