Construction of ZIF-8/AuNPs/PVP–rGO/GCE Electrochemical Sensor and Its Sensitive Determination of Salbutamol

2019 
An excellent electrochemical sensor based on glassy carbon electrode (GCE) modified in order with polyvinyl pyrrolidone-dispersed reduced graphene oxide (PVP–rGO), gold nanoparticles (AuNPs) and metal-organic framework material of ZIF-8 was fabricated for the highly sensitive determination of salbutamol (SAL). The modified materials and electrodes were characterized and investigated by X-ray diffraction (XRD), fourier transform infrared (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron dispersive X-ray (EDX), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that ZIF-8/AuNPs/PVP–rGO/GCE exhibited a superior performance with a high sensitivity and selectivity as well as a satisfied stability and reproducibility for the determination of SAL because the self-assembled sensor was possessed of a large number of pores to promote the adsorption of SAL on its surface and offered the electron transfer environment to speed the electrochemical redox reaction of SAL remarkably. The SAL determination limit was as low as 1.00 × 10–12 mol/L under the optimum conditions with a linear range from 1.00 × 10–12 to 5.00 × 10–9 mol/L and a correlation coefficient (R) of 0.9985. Based on SAL electrochemical redox process of one-proton and one-electron involved, the possible redox mechanism of SAL on ZIF‑8/AuNPs/PVP–rGO/GCE was proposed. Furthermore, the electrochemical sensor was used for the detection of SAL in real pork samples and a well-pleasing result was achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []