Improvements in the non-dispersive atomic fluorescence spectrometric determination of arsenic and antimony by a hydride generation technique

1978 
Abstract A sodium borohydride reduction, with subsequent atomization in a small argon—hydrogen—entrained air flame has been developed for the determination of arsenic and antimony by non-dispersive atomic fluorescence spectrometry. The proposed method increases the signal level and decreases the noise level in the system. The detection limits for arsenic and antimony are 0.05 ng and 0.1 ng, respectively. The analytical working curves are linear over about four decades of concentration from the detection limits. The consumption rates of hydrogen and argon are comparatively low, while the speed of hydride evolution is improved; a peak measurement requires less than 40 s. The technique has been applied to the determination of arsenic in steel samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    27
    Citations
    NaN
    KQI
    []