Surface- and Strain-Mediated Reversible Phase Transformation in Quantum-Confined ZnO Nanowires

2019 
: The phase stability of ZnO in a quantum-confinement size regime (sub-2-nm) remains fiercely debated. Applying in situ (scanning) transmission electron microscopy, we present the atomistic view of the phase transitions from the original wurtzite structure to an intermediate body-centered tetragonal and h-MgO structure under tensile strain in quantum-confined ZnO nanowires. Strikingly, such structural transitions are reversible after releasing the stress. Further theoretical calculations mirror the transition pathway and provide basic insight into the overall landscape regarding surface- and strain-dependent phase transition behavior. Our results provide the critical piece to solve the puzzle in phase stability of ZnO, which may prove essential for advancing a variety of nanotechnologies, e.g., quantum-dot light-emitting devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    10
    Citations
    NaN
    KQI
    []