Transient upregulation of translational efficiency in prodromal and early symptomatic Tg2576 mice contributes to Aβ pathology
2020
Abstract Tg2576 mice show high levels of human APP protein with Swedish Mutation during prodromal and early symptomatic stages. Interestingly, this is strictly associated with unbalanced expression of its two RNA binding proteins (RBPs) regulators, the Fragile-X Mental Retardation Protein (FMRP) and the heteronuclear Ribonucleoprotein C (hnRNP C). Whether an augmentation in overall translational efficiency also contributes to the elevation of APP levels at those early developmental stages is currently unknown. We investigated this possibility by performing a longitudinal polyribosome profiling analysis of APP mRNA and protein in total hippocampal extracts from Tg2576 mice. Results showed that protein polysomal signals were exclusively detected in pre-symptomatic (1 months) and early symptomatic (3 months) mutant mice. Differently, hAPP mRNA polysomal signals were detected at any age, but a peak of expression was found when mice were 3-month old. Consistent with an early but transient rise of translational efficiency, the phosphorylated form of the initial translation factor eIF2α (p-eIF2α) was reduced at pre-symptomatic and early symptomatic stages, whereas it was increased at the fully symptomatic stage. Pharmacological downregulation of overall translation in early symptomatic mutants was then found to reduce hippocampal levels of full length APP, Aβ species, BACE1 and Caspase-3, to rescue predominant LTD at hippocampal synapses, to revert dendritic spine loss and memory alterations, and to reinstate memory-induced c-fos activation. Altogether, our findings demonstrate that overall translation is upregulated in prodromal and early symptomatic Tg2576 mice, and that restoring proper translational control at the onset of AD-like symptoms blocks the emergence of the AD-like phenotype.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
67
References
4
Citations
NaN
KQI