Using Bayesian Belief Networks to assess the influence of landscape connectivity on ecosystem service trade-offs and synergies in urban landscapes in the UK

2021 
Landscape connectivity is assumed to influence ecosystem service (ES) trade-offs and synergies. However, empirical studies of the effect of landscape connectivity on ES trade-offs and synergies are limited, especially in urban areas where the interactions between patterns and processes are complex. The objectives of this study were to use a Bayesian Belief Network approach to (1) assess whether functional connectivity drives ES trade-offs and synergies in urban areas and (2) assess the influence of connectivity on the supply of ESs. We used circuit theory to model urban bird flow of P. major and C. caeruleus at a 2 m spatial resolution in Bedford, Luton and Milton Keynes, UK, and Bayesian Belief Networks (BBNs) to assess the sensitivity of ES trade-offs and synergies model outputs to landscape and patch structural characteristics (patch area, connectivity and bird species abundance). We found that functional connectivity was the most influential variable in determining two of three ES trade-offs and synergies. Patch area and connectivity exerted a strong influence on ES trade-offs and synergies. Low patch area and low to moderately low connectivity were associated with high levels of ES trade-offs and synergies. This study demonstrates that landscape connectivity is an influential determinant of ES trade-offs and synergies and supports the conviction that larger and better-connected habitat patches increase ES provision. A BBN approach is proposed as a feasible method of ES trade-off and synergy prediction in complex landscapes. Our findings can prove to be informative for urban ES management.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []