Permeability Prediction of Tight Sandstone Reservoirs Using Improved BPNeural Network
2015
By analyzing the permeability controlling factors of tight sandstone reservoir in Wuhaozhuang Oil Field, the permeability is considered to be mainly controlled by porosity, clay content, irreducible water saturation and diagenetic coefficient. Because the conventional BP algorithm has its drawbacks such as slow convergence speed and easy falling into the local minimum value, an improved three-layer feed-forward BP neural network model is built by MATLAB neu- ral network toolbox to predict permeability according to the four permeability controlling factors, while studying samples of model are selected based on the representative core analysis data. The simulation based on improved neural network model shows that the improved model has a faster convergence speed and better accuracy. The consistency between model prediction value and lab test value is good and the mean squared error is less. Therefore, the new model can meet the needs of the development geology research of oil field better in the future.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
10
References
3
Citations
NaN
KQI