Effects of physicochemical properties of zinc oxide nanoparticles on cellular uptake

2011 
Zinc oxide (ZnO) nanoparticles have been used as a source of zinc, an essential trace element in food industry and also widely applied to various cosmetic products. However, there are few researches demonstrating that the cellular uptake behaviours of ZnO with respect to the physicochemical characteristics such as particle size and surface charge in human cells. In this study, we evaluated the cellular uptake of ZnO with two different sizes (20 and 70 nm) and different charges (positive and negative). Human lung epithelial cells were exposed to ZnO for a given time, and then the uptake amount of ZnO was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results showed that the smaller sized ZnO could more easily enter the cells than the larger sized ZnO. In terms of surface charge, positively charged ZnO showed high cellular uptake compared to ZnO with negative charge. The internalization pathway of positively charged ZnO nanoparticles was determined to be primarily related to the energy-dependent endocytosis. It is, therefore, concluded that the particle size and surface charge of ZnO nanoparticles are critical factors influencing on their cellular uptake. Understanding the cellular uptake behaviours of nanoparticles with respect to physicochemical properties may be important to predict their toxicity potential on human.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    26
    Citations
    NaN
    KQI
    []