Human platelets generate phospholipid-esterified prostaglandins via cyclooxygenase-1 that are inhibited by low dose aspirin supplementation

2013 
Oxidized phospholipids (oxPLs) generated nonenzymatically display pleiotropic biological actions in inflammation. Their generation by cellular cyclooxygenases (COXs) is currently unknown. To determine whether platelets generate prostaglandin (PG)-containing oxPLs, then characterize their structures and mechanisms of formation, we applied precursor scanning-tandem mass spectrometry to lipid extracts of agonist-activated human platelets. Thrombin, collagen, or ionophore activation stimulated generation of families of PGs comprising PGE2 and D2 attached to four phosphatidylethanolamine (PE) phospholipids (16:0p/, 18:1p/, 18:0p/, and 18:0a/). They formed within 2 to 5 min of activation in a calcium, phospholipase C, p38 MAP kinases, MEK1, cPLA2, and src tyrosine kinase-dependent manner (28.1 ± 2.3 pg/2 × 108 platelets). Unlike free PGs, they remained cell associated, suggesting an autocrine mode of action. Their generation was inhibited by in vivo aspirin supplementation (75 mg/day) or in vitro COX-1 blockade. Inhibitors of fatty acyl reesterification blocked generation significantly, while purified COX-1 was unable to directly oxidize PE in vitro. This indicates that they form in platelets via rapid esterification of COX-1 derived PGE2/D2 into PE. In summary, COX-1 in human platelets acutely mediates membrane phospholipid oxidation via formation of PG-esterified PLs in response to pathophysiological agonists.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    34
    Citations
    NaN
    KQI
    []