Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection.

1995 
Several inhibitors of the large regulatory enzyme glycogen phosphorylase (GP) have been studied in crystallographic and kinetic experiments. GP catalyses the first step in the phosphorylysis of glycogen to glucose-l-phosphate, which is utilized via glycolysis to provide energy to sustain muscle contraction and in the liver is converted to glucose, a-D-Glucose is a weak inhibitor of glycogen phosphorylase form b (GPb, K i = 1.7 mM) and acts as a physiological regulator of hepatic glycogen metabolism. Glucose binds to phosphorylase at the catalytic site and results in a conformational change that stabilizes the inactive T state of the enzyme, promoting the action of protein phosphatase 1 and stimulating glycogen synthase. It has been suggested that in the liver, glucose analogues with greater affinity for glycogen phosphorylase may result in a more effective regulatory agent. Several N-acetyl glucopyranosylamine derivatives have been synthesized and tested in a series of crystallographic and kinetic binding studies with GPb. The structural results of the bound enzyme-ligand complexes have been analysed together with the resulting affinities in an effort to understand and exploit the molecular interactions that might give rise to a better inhibitor. Comparison of the N-methylacetyl glucopyranosylamine (N-methylamide, K i = 0.032mM) with the analogous/3-methylamide derivative (C-methylamide, Ki=0.16mM) illustrate the importance of
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    61
    Citations
    NaN
    KQI
    []