Data-Driven Adaptive Consensus Learning From Network Topologies.

2021 
The problem of consensus learning from network topologies is studied for strongly connected nonlinear nonaffine multiagent systems (MASs). A linear spatial dynamic relationship (LSDR) is built at first to formulate the dynamic I/O relationship between an agent and all the other agents that are communicated through the networked topology. The LSDR consists of a linear parametric uncertain term and a residual nonlinear uncertain term. Utilizing the LSDR, a data-driven adaptive learning consensus protocol (DDALCP) is proposed to learn from both time dynamics of agent itself and spatial dynamics of the whole MAS. The parametric uncertainty and nonlinear uncertainty are estimated through an estimator and an observer respectively to improve robustness. The proposed DDALCP has a strong learning ability to improve the consensus performance because time dynamics and network topology information are both considered. The proposed consensus learning method is data-driven and has no dependence on the system model. The theoretical results are demonstrated by simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []