Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring

2015 
Abstract Recent advancements in technology have made possible the use of novel, cost-efficient biomonitoring techniques which facilitate monitoring animal populations at larger spatial and temporal scales. Here, we investigated using passive acoustic monitoring (PAM) for wild primate populations living in the forest of Tai National Park, Cote d’Ivoire. We assessed the potential of using a customized algorithm for the automated detection of multiple primate species to obtain reliable estimates of species occurrence from acoustic data. First, we applied the algorithm on continuous rainforest recordings collected using autonomous recording units (ARUs) to detect and classify three sound signals: chimpanzee buttress drumming, and the loud calls of the diana and king colobus monkey. Using an occupancy modelling approach we then investigated to what extent the automated, probabilistic output needs to be listened to, and thus manually cleaned, by a human expert, to approach occupancy probabilities derived from ARU data fully verified by a human. To do this we explored the robustness of occupancy probability estimates by simulating ARU datasets with various degrees of cleaning for false positives and false negative detections. We further validated the approach by comparing it to data collected by human observers on point transects located within the same study area. Our study demonstrates that occurrence estimates from ARU data, combined with automated processing methods such as our algorithm, can provide results comparable to data collected by humans and require less effort. We show that occupancy probabilities are quite robust to cleaning effort, particularly when occurrence is high, and suggest that for some species even naive occupancy, as derived from ARU data without any cleaning, could provide a quick and reliable indicator to guide monitoring efforts. We found detection probabilities to be most influenced by time of day for chimpanzee drums while temperature and, likely, poaching pressure, affected detection of diana monkey loud calls. None of the covariates investigated appeared to have strongly affected king colobus loud call detection. Finally, we conclude that the semi-automated approach presented here could be used as an early-warning system for poaching activity and suggest additional techniques for improving its performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    121
    Citations
    NaN
    KQI
    []