Land Surface Temperature Assessment in Central Sumatra, Indonesia

2020 
Land Surface Temperature (LST) assessment can explain temperature variation, which may be influenced by factors such as elevation, land cover, and the normalized difference vegetation index (NDVI). In this study, a multiple linear regression model of LST variation was constructed based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite, relating to the period, 2000-2018. The highest LST variation of nearly 1.3 °C/decade was found in savanna areas while the lowest variation was in the evergreen broadleaf forest and woody savanna, which experienced a decrease of 2.1 °C/decade. The overall mean change of LST was -0.4 °C/decade and the regression model with LST as the dependent variable and elevation, land cover type, and NVDI as independent variables produced an R square of 0.376. The variation in LST was different depending upon the NDVI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []