Gene expression profiling of sequential metastatic biopsies for biomarker discovery in breast cancer

2015 
Abstract The feasibility of longitudinal metastatic biopsies for gene expression profiling in breast cancer is unexplored. Dynamic changes in gene expression can potentially predict efficacy of targeted cancer drugs. Patients enrolled in a phase III trial of metastatic breast cancer with docetaxel monotherapy versus combination of docetaxel + sunitinib were offered to participate in a translational substudy comprising longitudinal fine needle aspiration biopsies and Positron Emission Tomography imaging before (T1) and two weeks after start of treatment (T2). Aspirated tumor material was used for microarray analysis, and treatment-induced changes (T2 versus T1) in gene expression and standardized uptake values (SUV) were investigated and correlated to clinical outcome measures. Gene expression profiling yielded high-quality data at both time points in 14/18 patients. Unsupervised clustering revealed specific patterns of changes caused by monotherapy vs. combination therapy (p = 0.021, Fisher's exact test). A therapy-induced reduction of known proliferation and hypoxia metagene scores was prominent in the combination arm. Changes in a previously reported hypoxia metagene score were strongly correlated to the objective responses seen by conventional radiology assessments after 6 weeks in the combination arm, Spearman's ρ = 1 (p = 0.017) but not in monotherapy, ρ = −0.029 (p = 1). Similarly, the Predictor Analysis of Microarrays 50 (PAM50) proliferation metagene correlated to tumor changes merely in the combination arm at 6 and 12 weeks (ρ = 0.900, p = 0.083 and ρ = 1, p = 0.017 respectively). Reductions in mean SUV were a reliable early predictor of objective response in monotherapy, ρ = 0.833 (p = 0.008), but not in the combination arm ρ = −0.029 (p = 1). Gene expression profiling of longitudinal metastatic aspiration biopsies was feasible, demonstrated biological validity and provided predictive information.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    11
    Citations
    NaN
    KQI
    []