Tensor network states and ground-state fidelity for quantum spin ladders

2012 
We have developed an efficient tensor network algorithm for spin ladders, which generates ground-state wave functions for infinite-size quantum spin ladders. The algorithm is able to efficiently compute the ground-state fidelity per lattice site, a universal phase transition marker, thus offering a powerful tool to unveil quantum many-body physics underlying spin ladders. To illustrate our scheme, we consider the two-leg and three-leg Heisenberg spin ladders with staggering dimerization, the two-leg Heisenberg spin ladder with cyclic four-spin exchange, and the ferromagnetic frustrated two-leg ladder. The ground-state phase diagrams thus yielded are reliable, compared with the previous studies based on the the exact diagonalization and the density matrix renormalization group. Our results indicate that the ground-state fidelity per lattice site successfully captures quantum criticalities in spin ladders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    26
    Citations
    NaN
    KQI
    []