In situ Scanning electron microscope study and microstructural evolution of nano silicon anode for high energy Li-ion batteries

2014 
In situ and ex situ scanning electron microscopy of nano Si and SiO anode particles was carried out during the first cycles, and at various stages of charge. The particle size effects were explored in the range 0.1-20 μm, providing a new insight into the micro-structural evolution of the particles as a function of their size, and into the 'mechanical' resistance upon important volume change upon phase transformation of these anodes. For small particles, the failure of the battery comes from an electrochemical sintering that compacts the whole electrode, which results in its cracking. The particles keep their integrity when the discharge is stopped at a voltage 0.1V, which corresponds to the chemical composition Li12Si7, while the particles are known to crack at deeper discharge up to Li22Si5. Replacing the Si particles by SiO particles in an attempt to avoid these structural effects did not help, because of the different chemical reactions during cycling, with the loss of oxygen. Upon deeper discharge, the particles of size d<2 μm do not crack (at least during the first cycles that were investigated). On another hand, particles with 1010 μm are pulverized.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    63
    Citations
    NaN
    KQI
    []