An Integrated Imaging Study of the Pore Structure of the Cobourg Limestone—A Potential Nuclear Waste Host Rock in Canada

2021 
With the development of imaging technology, tools to quantitatively describe pore structure, morphology, and connectivity have been widely applied on low permeable rocks; however, it is still questionable to what extent this information can be used to predict permeability. Applicability and comparability of different techniques are discussed here for the Middle Ordovician Cobourg limestone (Canada), a rock dominated by calcite grains of variable sizes (µm–cm) and heterogeneously distributed quartz, dolomite, pyrite, and meshy clay minerals. Absolute porosities determined by helium pycnometry (HP) in literature are approximately 1.6% (±0.9%), and gas permeabilities range from 10−20 to 10−19 m2. Porosities obtained from BIB-SEM are much smaller compared to those from HP (16–69% of HP). Pores found in clays are smaller, slit-shaped, and more densely spaced when compared to those in calcite minerals. Connectivity between pores could not be resolved with 3D micro-CT or FIB-SEM reconstructions, which have a resolution limit of 8 µm and 10 nm, respectively. However, assuming the pores to be connected, laboratory-derived permeability data could be fitted using a simple capillary bundle model, including information about the visible pore size distributions obtained from BIB-SEM images and a tortuosity range of 8 to 15.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []