Reduced Graphene Oxide-Doped Ag3PO4 Nanostructure as a High Efficiency Photocatalyst Under Visible Light

2019 
A novel photocatalyst Ag3PO4/PDA (Polydopamine)/r-GO (reduced-graphene oxide) has been successfully prepared by a solvent hydrothermal method. The composite photocatalytic material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectra, X-ray photoelectron spectrometer (XPS) and X-ray energy dispersive spectrometry (EDS). Ag3PO4/PDA/r-GO showed a significantly enhanced photocatalytic activity in the degradation experiment of MB and RhB aqueous solution compared with pure Ag3PO4. The degradation rates of MB (Methylene blue) and RhB (Rhodamine B) aqueous solution were 96.8% and 92% in the examination with 15 min under visible light, respectively. At the same time the stability of composite material was higher than pure Ag3PO4. The improvement in photocatalytic performance is attributed to the larger specific surface area, higher absorption capability for visible-light, and most important, the r-GO could act as a charge bridge to accelerate the transfer of electron. This work is expected to provide a promising approach for improving the photocatalytic performance and further utilization of photosensitive semiconductors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []