GENETIC ALGORITHM FOR BINARY AND FUNCTIONAL DECISION DIAGRAMS OPTIMIZATION

2018 
Decision diagrams (DD) are a widely used data structure for discrete functions representation. The major problem in DD-based applicationsis the DD size minimization (reduction of the number of nodes), because their size is dependent on the variables order. Genetic algorithms are often used in different optimization problems including the DD size optimization. In this paper, we apply the genetic algorithm to minimize the size of both Binary Decision Diagrams (BDDs) and Functional Decision Diagrams (FDDs). In both cases, in the proposed algorithm, a Bottom-Up Partially Matched Crossover (BU-PMX) is used as the crossover operator. In the case of BDDs, mutation is done in the standard way by variables exchanging. In the case of FDDs, the mutation by changing the polarity of variables is additionally used. Experimental results of optimization of the BDDs and FDDs of the set of benchmark functions are also presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []