Automatic detection of leakage point in central serous chorioretinopathy of fundus fluorescein angiography based on time sequence deep learning.

2021 
PURPOSE To detect the leakage points of central serous chorioretinopathy (CSC) automatically from dynamic images of fundus fluorescein angiography (FFA) using a deep learning algorithm (DLA). METHODS The study included 2104 FFA images from 291 FFA sequences of 291 eyes (137 right eyes and 154 left eyes) from 262 patients. The leakage points were segmented with an attention gated network (AGN). The optic disk (OD) and macula region were segmented simultaneously using a U-net. To reduce the number of false positives based on time sequence, the leakage points were matched according to their positions in relation to the OD and macula. RESULTS With the AGN alone, the number of cases whose detection results perfectly matched the ground truth was only 37 out of 61 cases (60.7%) in the test set. The dice on the lesion level were 0.811. Using an elimination procedure to remove false positives, the number of accurate detection cases increased to 57 (93.4%). The dice on the lesion level also improved to 0.949. CONCLUSIONS Using DLA, the CSC leakage points in FFA can be identified reproducibly and accurately with a good match to the ground truth. This novel finding may pave the way for potential application of artificial intelligence to guide laser therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []