Human Posture Recognition Based on Images Captured by the Kinect Sensor

2016 
In this paper we combine several image processing techniques with the depth images captured by a Kinect sensor to successfully recognize the five distinct human postures of sitting, standing, stooping, kneeling, and lying.The proposed recognition procedure first uses background subtraction on the depth image to extract a silhouette contour of a human. Then, a horizontal projection of the silhouette contour is employed to ascertain whether or not the human is kneeling. If the figure is not kneeling, the star skeleton technique is applied to the silhouette contour to obtain its feature points. We can then use the feature points together with the centre of gravity to calculate the feature vectors and depth values of the body. Next, we input the feature vectors and the depth values into a pre-trained LVQ (learning vector quantization) neural network; the outputs of this will determine the postures of sitting (or standing), stooping, and lying. Lastly, if an output indicates sitting or standing, one further, s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    28
    Citations
    NaN
    KQI
    []