language-icon Old Web
English
Sign In

Force on a moving liquid blister

2021 
This paper investigates the motion of a liquid blister, trapped between an elastic sheet and a rigid substrate. The blister is driven by a frictionless blade moving at a constant velocity, forcing a constant gap that causes fluid to bleed from the blister. The sheet adheres to the substrate ahead of the blister. The main goal of the study is to assess the magnitude and orientation of the force applied by the blade on the moving blister. The solution is constructed for the asymptotic case of a long blister. Thanks to a separation of scales, the asymptotic solution is obtained by matching the boundary layers at the front end and at the back end of the blister to an outer solution characterised by a uniform pressure in the bulk. Both boundary layers are formulated as travelling-wave equations for the gap between the sheet and the substrate. The formulation accounts for a moving fluid front, distinct from the separation edge, and for a tail with a gap tending to an a priori unknown value far behind the blister. Scaling of the governing equations indicates that the solution depends on two numbers: a dimensionless toughness .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []