Artificial intelligence in CT for quantifying lung changes in the era of CFTR modulators.

2021 
Rationale Chest computed tomography (CT) remains the imaging standard for demonstrating cystic fibrosis airway structural disease in vivo. However, visual scorings as an outcome measure are time-consuming, require training, and lack high reproducibility. Objective To validate a fully automated artificial intelligence-driven scoring of cystic fibrosis lung disease severity. Methods Data were retrospectively collected in three cystic fibrosis reference centers, between 2008 and 2020, in 184 patients 4 to 54-years-old. An algorithm using three two-dimensional convolutional neural networks was trained with 78 patients’ CTs (23 530 CT slices) for the semantic labeling of bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar mucus, and collapse/consolidation. 36 patients’ CTs (11 435 CT slices) were used for testing versus ground-truth labels. The method9s clinical validity was assessed in an independent group of 70 patients with or without lumacaftor/ivacaftor treatment (n=10 and 60, respectively) with repeat examinations. Similarity and reproducibility were assessed using Dice coefficient, correlations using Spearman test, and paired comparisons using Wilcoxon rank test. Measurement and main results The overall pixelwise similarity of artificial intelligence-driven versus ground-truth labels was good (Dice coefficient=0.71). All artificial intelligence-driven volumetric quantifications had moderate to very good correlations to a visual imaging scoring (p 0.99). Conclusion Artificial intelligence allows a fully automated volumetric quantification of cystic fibrosis-related modifications over an entire lung. The novel scoring system could provide a robust disease outcome in the era of effective CFTR modulator therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []