Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer

2017 
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    7
    Citations
    NaN
    KQI
    []