Design of a novel 3D tip-based nanofabrication system with high precision depth control capability

2020 
Abstract The design, analysis, and experimental investigation of a novel 3D tip-based nanofabrication system with high precision depth control capability is presented in this paper. Based on this system, a new depth control method, namely tip displacement-based closed-loop (DC) depth control methodology is proposed to improve the depth control capability. As the force-depth prediction with the commonly-used depth control method, i.e. the normal force-based closed-loop (FC) method, may depend on the machining speed, the machining direction, and the material properties, etc. Compared with the FC method, the DC method decreases the complexity and the high uncertainty. The tip feed system utilizes a non-contact force, i.e. the electromagnetic force, to adjust the tip displacement. Therefore, the tip support mechanism can be used to accomplish the tip-sample contact detection. Additionally, an active compensation method is proposed to eliminate the tilt angle between the sample surface and the horizontal plane. Otherwise the machining depth will change gradually, i.e. getting deeper or lower. Furthermore, a series of patterns have been fabricated on silicon sample surface with the proposed system and method. The maximum machining depth of a single scan reaches 300 nm, which is much larger than that of an atomic force microscope (AFM)-based nanofabrication system. The experimental results demonstrate that the system has advantages of distinguished depth control capability, high machining accuracy, and excellent repeatability, which diminishes the influence of above-mentioned factors on the machining depth. Also, the method has the potential of machining arbitrary 2D/3D patterns with well-controlled depth and high accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    5
    Citations
    NaN
    KQI
    []