Anaerobic biodegradation of levofloxacin by enriched microbial consortia: Effect of electron acceptors and carbon source.

2021 
Abstract For improving the understanding of anaerobic degradation mechanism of fluoroquinolone antibiotics (FQs), the degradation of a representative FQs, levofloxacin (LEV), by six enriched anaerobic consortia were explored in this study. The effect of sulfate and nitrate as the electron acceptor and glucose as the carbon source on LEV anaerobic degradation were investigated. Addition of glucose and nitrate alone deteriorated LEV removal from 36.5% to 32.7% and 29.1%, respectively. Addition of sulfate slightly improved LEV removal to 39.6%, while simultaneous addition of glucose and sulfate significantly enhanced LEV removal to 53.1%. Twelve biodegradation intermediates were identified, which indicated that cleavage of piperazine ring is prior to that of quinolone ring, and hydroxylation, defluorination, demethylation, and decarboxylation were the primary steps of LEV anaerobic degradation. Lactobacillus, unclassified _f_Enterobacteriaceae, and Bacillus were enriched by simultaneous addition of glucose and sulfate, with relative abundance of 63.5%, 32.7%, and 3.3%, respectively. The predicted high gene abundance of xenobiotics biodegradation & metabolism, carbohydrate metabolism, and assimilatory sulfate reduction in the consortium, indicated a co-metabolism between carbohydrate metabolism, sulfate metabolism, and LEV degradation under glucose and sulfate added condition. The study revealed that simultaneous addition of glucose and sulfate is the favorable condition for LEV anaerobic degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    4
    Citations
    NaN
    KQI
    []