Using graphene networks to build SiC(rGO, Gx) bulk ceramics from polymeric precursors

2021 
Abstract Unique properties of graphene open new opportunities for preparing composites with favorable functional capabilities. Herein, an ingenious synthesis route via re-pyrolysis process of ball-milling-induced SiC(rGO, Gx)p fillers/polycarbosilane-vinyltriethoxysilane-graphene oxide (PCS-VTES-GO, PVG) precursors blends is proposed to obtain structural-functional integrated SiC(rGO, Gx) bulk polymer-derived ceramics (PDCs). The introduction of SiC(rGO, Gx)p provides favorable moldability, ceramic yield and linear shrinkage. Attractively, graphene networks with more free-moving electrical-charge carriers and wider phonon-channel prominently enhance electrical and thermal conductivities of products. Particularly, SiC(rGO, G20%) bulk PDCs generated at 1300 °C own satisfactory ceramic yield (90.74%), linear shrinkage (5.00%), fracture toughness (2.07 MPa m1/2), bending strength (35.37 MPa), electrical conductivity (25.72 S cm−1) and thermal conductivity (6.72 W m−1·K−1), realizing outstanding values to the best of our knowledge. This fabrication method favors mass production of larger-sized PDCs and possess potential emerging uses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    0
    Citations
    NaN
    KQI
    []